Turchin's Relation and Subsequence Relation in Loop Approximation

نویسنده

  • Antonina Nepeivoda
چکیده

The paper studies the subsequence relation through a notion of an intransitive binary relation on words in traces generated by prefix-rewriting systems. The relation was introduced in 1988 by V.F. Turchin for loop approximation in supercompilation. We study properties of this relation and introduce some refinements of the subsequence relation that inherit the useful features of Turchin’s relation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Turchin’s Relation and Subsequence Relation on Traces Generated by Prefix Grammars

Turchin’s relation was introduced in 1988 by V. F. Turchin for loop approximation in supercompilation. The paper studies properties of an analogue of the Turchin relation and properties of the subsequence embedding on a restricted set of traces generated by prefix grammars or by a product of prefix grammars.

متن کامل

Topological structure on generalized approximation space related to n-arry relation

Classical structure of rough set theory was first formulated by Z. Pawlak in [6]. The foundation of its object classification is an equivalence binary relation and equivalence classes. The upper and lower approximation operations are two core notions in rough set theory. They can also be seenas a closure operator and an interior operator of the topology induced by an equivalence relation on a u...

متن کامل

Turchin's Relation for Call-by-Name Computations: A Formal Approach

Supercompilation is a program transformation technique that was first described by V. F. Turchin in the 1970s. In supercompilation, Turchin’s relation as a similarity relation on call-stack configurations is used both for call-by-value and call-by-name semantics to terminate unfolding of the program being transformed. In this paper, we give a formal grammar model of call-by-name stack behaviour...

متن کامل

BEST APPROXIMATION IN QUASI TENSOR PRODUCT SPACE AND DIRECT SUM OF LATTICE NORMED SPACES

We study the theory of best approximation in tensor product and the direct sum of some lattice normed spacesX_{i}. We introduce quasi tensor product space anddiscuss about the relation between tensor product space and thisnew space which we denote it by X boxtimesY. We investigate best approximation in direct sum of lattice normed spaces by elements which are not necessarily downwardor upward a...

متن کامل

The modified BFGS method with new secant relation ‎for unconstrained optimization problems‎

Using Taylor's series we propose a modified secant relation to get a more accurate approximation of the second curvature of the objective function. Then, based on this modified secant relation we present a new BFGS method for solving unconstrained optimization problems. The proposed method make use of both gradient and function values while the usual secant relation uses only gradient values. U...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014